Termodinâmica (IV)
Borges e Nicolau
Revisando e complementando
1. Transformação isobárica
Na transformação isobárica estudamos que o trabalho τ que o gás realiza sobre o meio exterior ou recebe do meio exterior é dado pelo produto da pressão p pela variação de volume ΔV:
τ = p . ΔV
Estudamos também que este trabalho é numericamente igual à área do retângulo no gráfico p x V.
Clique para ampliar
Seja massa m a massa, n o número de mols e ΔT a variação de temperatura de um gás que sofre uma transformação isobárica. A quantidade de calor que o gás troca com o meio exterior pode ser calculada de uma das seguintes maneiras:
x
Q = m . cP . ΔT xex Q = n . CP . ΔT
cP e CP são, respectivamente, o calor específico a pressão constante e o calor molar a pressão constante do gás. Observe que: CP = cP . M, onde M é a massa molar do gás.
2. Transformação isocórica
Na transformação isocórica sabemos que o trabalho trocado pelo gás é nulo:
τ = 0
Seja massa m a massa, n o número de mols e ΔT a variação de temperatura de um gás que sofre uma transformação isocórica. A quantidade de calor que o gás troca com o meio exterior pode ser calculada de uma das seguintes maneiras:
Q = m . cV . ΔT xex Q = n . CV . ΔT
cV e CV são, respectivamente, o calor específico a volume constante e o calor molar a volume constante do gás. Observe que: CV = cV . M, onde M é a massa molar do gás.
3. Relação de Mayer
No diagrama p x V as curvas representam duas transformações isotérmicas nas temperaturas T1 e T2, com T1 < T2. Vamos considerar que um gás perfeito com n mols sofra uma das transformações A => B ou A => C.
Clique para ampliar
Na transformação A => B (isocórica), temos: τ = 0 e pela Primeira Lei da Termodinâmica (Q = τ + ΔU), vem: QV = ΔUV (1)
Na transformação A => C (isobárica), temos pela Primeira Lei
da Termodinâmica: QP = τP + ΔUP (2).
Mas ΔUV = ΔUP pois as duas transformações sofrem a mesma variação de temperatura. Assim, de (1) e (2), resulta:
QP = τP + QV => QP - QV = τP => n.CP.ΔT - n.CV.Δt = p.ΔV =>
n.CP.ΔT - n.CV.ΔT = n.R.ΔT =>
CP - CV = R
Relação de Mayer
4. Revisando a Segunda lei da Termodinâmica
"É impossível construir uma máquina, operando em ciclos, tendo como único efeito retirar calor de uma fonte e convertê-lo integralmente em trabalho".Nicolas Leonard Sadi Carnot evidenciou que para uma máquina térmica funcionar era fundamental a existência de uma diferença de temperatura. Ele estabeleceu que:
Na conversão de calor em trabalho de modo contínuo, a máquina deve operar em ciclos entre duas fontes térmicas, uma fonte quente e uma fonte fria. Em cada ciclo, a máquina retira uma quantidade de calor Q1 da fonte quente, que é parcialmente convertida em trabalho τ, e rejeita para a fonte fria a quantidade de calor Q2 que não foi convertida.
Esquematicamente:
Clique para ampliar
Exemplo: o motor a explosão de um automóvel.
A fonte quente corresponde à câmara de combustão onde a faísca da vela inflama o vapor do combustível. Em cada ciclo, é produzida uma quantidade de calor Q1 a uma temperatura elevada (T1). Parte dessa energia se converte no trabalho τ, que é a energia útil que move o veículo. A quantidade de calor Q2, que não se converteu, é rejeitada para a fonte fria (o ar atmosférico), que se mantém numa temperatura relativamente mais baixa (T2).
Funcionamento do motor a explosão. Clique aqui x
Rendimento η de uma máquina térmica
É o quociente entre a energia útil obtida em cada ciclo (o trabalho τ) e a energia total fornecida pela fonte quente (a quantidade de calor Q1).
Sendo τ = Q1 - Q2, resulta:
Ciclo de Carnot
É um ciclo teórico constituído por duas transformações isotérmicas nas temperaturas T1 e T2, respectivamente das fontes quente e fria, alternadas com duas transformações adiabáticas.
Clique para ampliar
AB: expansão isotérmica à temperatura T1 (fonte quente). Nesta transformação o gás recebe a quantidade de calor Q1
BC: é a expansão adiabática, na qual a temperatura diminui para T2
CD: compressão isotérmica à temperatura T2 (fonte fria). Nesta transformação o gás cede a quantidade de calor Q2
DA: compressão adiabática na qual a temperatura aumenta para T1.
O trabalho obtido por ciclo corresponde à área interna dele.
No ciclo de Carnot a relação Q2/Q1 é igual a T2/T1. Assim, o rendimento de uma máquina térmica operando com o ciclo de Carnot é dado por:
Importante: o máximo rendimento teoricamente possível de uma máquina térmica funcionando entre as duas temperaturas T1 e T2, das fontes quente e fria, é quando opera segundo o ciclo de Carnot.
Exercícios básicos
Exercício 1:
Um gás perfeito sofre uma transformação A => B por um dos dois caminhos indicados no diagrama abaixo. Sejam τI o trabalho trocado na transformação
I e τII o trabalho trocado na transformação II.
Clique para ampliar
Pode-se afirmar que:
a) τI = τII
b) τI > τII
c) τI < τII
d) τI = 2.τII
e) τI = 0,5.τII
Resolução: clique aqui
A área sob a curva na transformação (I) é maior do que na transformação (II).
Logo, τI > τII
Resposta: b
Exercício 2:
Retome a questão anterior. Sejam ΔUI a variação de energia interna na transformação I e ΔUII a variação de energia interna na transformação II. Pode-se afirmar que:
a) ΔUI = ΔUII
b) ΔUI > ΔUII
c) ΔUI < ΔUII
d) ΔUI = 2.ΔUII
e) ΔUI = 0,5.ΔUII
Resolução: clique aqui
Os estados iniciais das duas transformações coincidem, o mesmo acontecendo com os estados finais. Logo, as variações de energia interna são iguais.
Resposta: a
Exercício 3:
A massa de 30 g de hélio (massa molar M = 4 g/mol), considerado um gás ideal, dilata-se isobaricamente. Sendo R = 2 cal/mol.K a constante universal dos gases perfeitos, cV = 0,75 cal/g.K o calor específico do hélio sob volume constante. Determine a quantidade de calor que o gás recebe no processo sabendo-se que sua temperatura varia de 200 K a 600 K.
Resolução: clique aqui
CP - CV = R => CP - M.cV = R => CP - 4.0,75 = 2 => CP = 5 cal/mol.K
QP = n.CP.ΔT => QP = (30/4).5.(600-200) => QP = 15000 cal
Resposta: 15000 cal
Exercício 4:
Admita que o aquecimento do mesmo gás do exercício anterior (de 200 K para 600 K) tivesse sido realizado isocoricamente. Determine para essa situação a quantidade de calor recebida pelo gás.
Resolução: clique aqui
QV = m.cV.ΔT => QV = 30.0,75.400 => QV = 9000 cal
Resposta: 9000 cal
Exercício 5:
As máquinas térmicas transformam a energia interna de um combustível em energia mecânica. De acordo com a 2ª Lei da Termodinâmica, não é possível construir uma máquina térmica que transforme toda a energia interna do combustível em trabalho, isto é, uma máquina de rendimento igual a 1 ou equivalente a 100%. O cientista francês Sadi Carnot (1796-1832) provou que o rendimento máximo obtido por uma máquina térmica operando entre as temperaturas T1 (fonte quente) e T2 (fonte fria) é dado por:
η = 1 - T2/T1.
Com base nessas informações, é correto afirmar que o rendimento da máquina térmica não pode ser igual a 1 porque, para isso, ela deveria operar:
a) entre duas fontes à mesma temperatura, T1 = T2, no zero absoluto.
b) entre uma fonte quente a uma temperatura, T1, e uma fonte fria a uma temperatura T2 = 0 ºC.
c) entre duas fontes à mesma temperatura, T1 = T2, diferente do zero absoluto.
d) entre uma fonte quente a uma temperatura, T1, e uma fonte fria a uma temperatura T2 = 0 K. (UFRN)
Resolução: clique aqui
Para η = 1 (100%), vem: T2 = 0 K
Resposta: d
Exercícios de revisão
Revisão/Ex 1:
(UFAP)
Um sistema formado por um gás ideal experimenta um processo reversível ou cíclico, seguindo a trajetória mostrada no diagrama pressão (P) versus volume (V). Obtenha o(s) valor(es) numérico(s) associado(s) à(s) proposição(ões) VERDADEIRA(S), a partir desse diagrama.
(01) A energia interna do sistema diminui ao ir do estado A para o estado B.
(02) A sistema perde calor ao ir do estado B para o estado C.
(04) A sistema perde calor ao ir do estado C para o estado D.
(08) A sistema ganha calor no processo de transformação C→D→A.
Resolução: clique aqui
(01) Incorreta. Ao ir do estado A para o estado B a temperatura aumenta e portanto aumenta a energia interna do sistema.
(02) Incorreta. Ao ir do estado B para o estado C o sistema realiza trabalho e aumenta a energia interna. Logo, o sistema deve receber calor.
(04) Correta. Ao ir de C para D o sistema não troca trabalho e diminui sua energia interna. Logo, cede calor.
(08) Incorreta. Na transformação CDA o sistema recebe trabalho e sua energia interna diminui. Logo, o sistema cede calor.
Resposta: 04
Revisão/Ex 2:
(UECE)
O grafico abaixo mostra como varia, em função da temperatura absoluta, a energia interna (U) de 1 mol de um gás ideal, de massa molar 4g/mol, mantido a volume constante:
No intervalo mostrado, os valores do trabalho realizado pelo gás nesta transformação, da quantidade de calor que o gás absorveu e do calor especifico (axvolume constante, em cal/g.ºC) do gás são, respectivamente:
A) 0, 400, 4
B) 0, 400, 1
C) 400, 0, 4
D) -400, 400, 1
Resolução: clique aqui
Sendo o volume constante, resulta τ = 0.
A variação de energia interna entre 100 K e 200 K é dada por:
ΔU = 600cal - 200 cal => ΔU = 400 cal
Da Primeira lei, vem:
Q = τ + ΔU => Q = 0 + 400 => Q = 400 cal
Sendo:
Q = m.c.Δθ => Q = n.M.c.Δθ => 400 = 1.4.c.100 => 400 = 400.c => c = 1 cal/g.ºC
Resposta: B
Revisão/Ex 3:
(URCA)
Uma máquina térmica utiliza um gás ideal para realizar o ciclo mostrado na figura.
Determine, respectivamente, o trabalho realizado e o calor recebido pelo gás em um ciclo.
a) 1.600 J e –800 J;
b) 800 J e 1.600 J;
c) 800 J e 800 J;
d) 1.600 J e –1.600 J;
e) 1.500 J e –1.500 J.
Resolução: clique aqui
τ = área do triângulo = (5-1).10-3.(6-2).105/2 => τ = 800 J
No ciclo:
ΔU = 0
Portanto:
Q = τ + ΔU => Q = 800 + 0 => Q = 800 J
Resposta: c
Revisão/Ex 4:
(URCA)
O ciclo de Carnot apresenta o máximo rendimento para uma máquina térmica operando entre duas temperaturas. Sobre ele podemos afirmar:
I – É formado por duas transformações adiabáticas alternadas com duas transformações isotérmicas, todas reversíveis;
II – A área do ciclo de Carnot é numericamente igual ao trabalho realizado no ciclo;
III – As quantidades de calor trocados com as fontes quente e fria são inversamente proporcionais às respectivas temperaturas absolutas das fontes.
Assinale a opção que indica o(s) item(ns) correto(s):
a) I, II e III;
b) Somente I e III;
c) Somente II e III;
d) Somente I;
e) Somente I e II.
Resolução: clique aqui
I - Correta. O ciclo de Carnot é formado por duas transformações adiabáticas alternadas com duas transformações isotérmicas.
II - Correta. O trabalho realizado no ciclo é numericamente igual à área do ciclo de Carnot.
III - Incorreta. As quantidades de calor trocados com as fontes quente e fria são diretamente proporcionais às respectivas temperaturas absolutas das fontes.
Resposta: e
Revisão/Ex 5:
(UEMG)
Um gás está no interior de um recipiente dotado de um êmbolo móvel. De repente, o êmbolo é puxado bruscamente.
Em relação ao gás no interior do recipiente, assinale a alternativa que traz uma informação INCORRETA:
A) A temperatura do gás diminui porque ele libera calor para o ambiente durante a expansão.
B) A pressão do gás diminui e seu volume aumenta.
C) A agitação das partículas do gás diminui, bem como a pressão do gás.
D) Os choques das partículas do gás contra as paredes do recipiente diminuem.
Resolução: clique aqui
O gás sofre uma expansão adiabática e realiza trabalho (τ > 0) pois o volume aumenta. Não há troca de calor (Q = 0). A energia interna diminui (ΔU = -τ) e portanto, a temperatura diminui. De p.V = n.R.T, concluímos que se T diminui e V aumenta, p deve diminuir. Logo, V aumenta e T, U e p diminuem. A informação incorreta está na alternativa A) pois Q = 0. A diminuição de temperatura é devida à diminuição da energia interna.
Resposta: A
Resposta: A
Nenhum comentário:
Postar um comentário