Empuxo e aceleração
(PUC - Rio)
Uma esfera de massa 1,0×103 kg está em equilíbrio, completamente submersa a uma grande profundidade dentro do mar. Um mecanismo interno faz com que a esfera se expanda rapidamente e aumente seu volume em 5,0 %.
Considerando que g = 10 m/s2 e que a densidade da água é dágua = 1,0×103 kg/m3, calcule:
a) o empuxo de Arquimedes sobre a esfera, antes e depois da expansão da mesma;
b) a aceleração da esfera logo após a expansão.
Resolução:
a) Antes da expansão, como a esfera está em equilíbrio, o empuxo tem intensidade igual ao peso:
E = P = m.g = 1,0×103.10 => E = 1,0×104 N
Após a expansão de 5% no volume o módulo do empuxo, por ser proporcional ao volume imerso, aumenta de 5% passando a ser:
E’ = 1,05×104 N
b) Pelo Princípio Fundamental da Dinâmica, temos:
E’ – P = m.a => 1,05×104 - 1,0×104 = 1,0×103.a => a = 0,5 m/s2
Respostas:
a) E = 1,0×104 N ; E’ = 1,05×104 N
b) a = 0,5 m/s2
Nenhum comentário:
Postar um comentário